7 research outputs found

    Metaheuristics for university course timetabling.

    Get PDF
    The work presented in this thesis concerns the problem of timetabling at universities – particularly course-timetabling, and examines the various ways in which metaheuristic techniques might be applied to these sorts of problems. Using a popular benchmark version of a university course timetabling problem, we examine the implications of using a “twostaged” algorithmic approach, whereby in stage-one only the mandatory constraints areconsidered for satisfaction, with stage-two then being concerned with satisfying the remaining constraints but without re-breaking any of the mandatory constraints in the process. Consequently, algorithms for each stage of this approach are proposed and analysed in detail.For the first stage we examine the applicability of the so-called Grouping Genetic Algorithm (GGA). In our analysis of this algorithm we discover a number of scaling-upissues surrounding the general GGA approach and discuss various reasons as to why this is so. Two separate ways of enhancing general performance are also explored. Secondly, an Iterated Heuristic Search algorithm is also proposed for the same problem, and in experiments it is shown to outperform the GGA in almost all cases. Similar observations to these are also witnessed in a second set of experiments, where the analogous problem of colouring equipartite graphs is also considered.Two new metaheuristic algorithms are also proposed for the second stage of the twostaged approach: an evolutionary algorithm (with a number of new specialised evolutionaryoperators), and a simulated annealing-based approach. Detailed analyses of both algorithms are presented and reasons for their relative benefits and drawbacks are discussed.Finally, suggestions are also made as to how our best performing algorithms might be modified in order to deal with further “real-world” constraints. In our analyses of these modified algorithms, as well as witnessing promising behaviour in some cases, we are also able to highlight some of the limitations of the two-stage approach in certain cases

    Finding feasible timetables using group-based operators.

    Get PDF
    This paper describes the applicability of the so-called "grouping genetic algorithm" to a well-known version of the university course timetabling problem. We note that there are, in fact, various scaling up issues surrounding this sort of algorithm and, in particular, see that it behaves in quite different ways with different sized problem instances. As a by-product of these investigations, we introduce a method for measuring population diversities and distances between individuals with the grouping representation. We also look at how such an algorithm might be improved: first, through the introduction of a number of different fitness functions and, second, through the use of an additional stochastic local-search operator (making in effect a grouping memetic algorithm). In many cases, we notice that the best results are actually returned when the grouping genetic operators are removed altogether, thus highlighting many of the issues that are raised in the stud

    Setting the research agenda in automated timetabling: the second international timetabling competition

    No full text
    The Second International Timetabling Competition (TTC2007) opened in August 2007. Building on the success of the first competition in 2002, this sequel aimed to further develop research activity in the area of educational timetabling. The broad aim of the competition was to create better understanding between researchers and practitioners by allowing emerging techniques to be developed and tested on real-world models of timetabling problems. To support this, a primary goal was to provide researchers with models of problems faced by practitioners through incorporating a significant number of real-world constraints. Another objective of the competition was to stimulate debate within the widening timetabling research community. The competition was divided into three tracks to reflect the important variations that exist in educational timetabling within higher education. Because these formulations incorporate an increased number of “real-world” issues, it is anticipated that the competition will now set the research agenda within the field. After finishing in January 2008, final results were made available in May 2008. Along with background to the competition, the competition tracks are described here along with a brief overview of the techniques used by the competition winners

    Students' participation in collaborative research should be recognised

    No full text
    Letter to the editor
    corecore